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Abstract. An interval method for determining local solutions of nonsmooth unconstrained optimiza-
tion problems is discussed. The objective function is assumed to be locally Lipschitz and to have
appropriate interval inclusions. The method consists of two parts, a local search and a global contin-
uation and termination. The local search consists of a globally convergent descent algorithm showing
similarities toε-bundle methods. Whileε-bundle methods use polytopes as inner approximations of
theε-subdifferentials, which are the main tools of almost all bundle concepts, our method uses axes
parallel boxes as outer approximations of theε-subdifferentials. The boxes are determined almost
automatically with inclusion techniques of interval arithmetic. The dimension of the boxes is equal
to the dimension of the problem and remains constant during the whole computation. The application
of boxes does not suffer from the necessity to invest methodical and computational efforts to adapt
the polytopes to the latest state of the computation as well as to simplify them when the number
of vertices becomes too large, as is the case with the polytopes. The second part of the method
applies interval techniques of global optimization to the approximative local solution obtained from
the search of the first part in order to determine guaranteed error bounds or to improve the solution
if necessary. We present prototype algorithms for both parts of the method as well as a complete
convergence theory for them and demonstrate how outer approximations can be obtained.
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1. Introduction

We want to solve the unconstrained optimization problem

minf (x)

wheref : Rn→ R is locally Lipschitz.
ε-bundle methods are a standard means for solving such problems (see for ex-

ample [14, 23, 24, 26, 27, 28, 33, 34, 48, 49, 54], for mainly the nonconvex case).
They were originally developed for convex functions and therefore related to the
ε-subdifferential concept in the sense of convex analysis. The method was then
generalized to locally Lipschitz continuous functions where theε-subdifferential
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was defined in the sense of Goldstein [6], that is

∂εf (x) = conv{∂f (y) : y ∈ B(x, ε)}. (1)

(B(x, ε) is the closed ball aroundx with radiusε and∂f (x) the subdifferential off
atx in the sense of Clarke, cf. [4] or Section 6.)ε-bundle methods consist in, firstly,
a search for a descent direction and, secondly, a step length determination (line
search), where trust region techniques are frequently used. The descent direction
is chosen from a polytope being an inner approximation of theε-subdifferential of
the objective function. The line search underlies the usual conventions of the one-
dimensional subproblem such as being exact or inexact, etc. The use of polytopes
is, however, connected with two drawbacks: The one is that the polytopes become
more and more complex during the numerical computation so that steps have to be
incorporated to keep the number of vertices of the polytopes reasonably bounded.
The other is that the approximation may become that poor that no appropriate
descent direction is found and that it is necessary to update the polytope instead
of determining the next descent direction (so-callednullstep).

The method we propose consists of two parts, i.e., alocal und aglobal phase.
Thelocal phase is anε-bundle descent method where theε-bundles are approxi-

mated by axes parallel parallelepipeds (calledboxes, for brevity) which are built by
interval arithmetic tools.Global convergenceto an approximative stationary point
can be proved.

The global phase uses interval arithmetic and branch and bound principles to
detect whether the solution obtained by the local part so far, is in fact a sufficiently
good approximation of a local minimizer and then to compute safe bounds for it, or
otherwise, to improve that solution or eventually, to reject it.Global convergence
is shown too.

Robinson [46] seemed to be the first who established such a 2-phase method by
applying interval arithmetic to find safe error bounds for local minimizers, but for
smooth problems only. His idea was to put a box around an approximate Karush–
Kuhn–Tucker point which had been obtained by any local method, and then to
apply an interval Newton based existence test to this box. Guaranteed error bounds
were rendered when the test was successful. The success of the test was mainly
depending on the right choice of the box size. Although the numerical results were
satisfactory, no convergence proof was available.

One difference of our approach to the one of Robinson is that we use inter-
val arithmetic in the local phase already, that is in order to approximate theε-
bundles from without. A second is that convergence for the global phase can be
proved. Although the convergence can be very slow under worst case conditions,
the efficiency is comparable with Robinson’s approach.

We are not aware of any attempt where outer approximations for theε-bundles
in descent methods have been used. The notation of anouter approximation, how-
ever, is frequently used in connection with cutting plane or related techniques (e.g.,
[31]). Further, a large class of procedures for nonsmooth optimization is covered
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by so-calledconceptual algorithms[32]. Although similarities cannot be excluded,
our approach does not fit into this class, since we do not need any assumption for
a minimum descent of the steps, as is the case at conceptual algorithms.

Let us glance at the two phases. During thelocal phase, pointsxk are gen-
erated iteratively in the following manner: Let, at thek-th iteration,Xk be the
n-dimensional cube with midpointxk and edge lengthε and let further be

∂f (Xk) =
⋃
x∈Xk

∂f (x). (2)

Then the interval approach we propose differs from the standardε-bundle approach
in four points:

(i) ε-bundle methods use a polytope, sayPk, as aninner approximation of
theε-subdifferential∂εf (xk). At the interval approach, a boxF ′k is used to
approximate (2) from without. Note that the convex hull of (2) can be in-
terpreted as anε-subdifferential w.r.t. the maximum-norm (with a different
value forε, certainly).

(ii) In contrast to the polytopes, the boxes can be determined with tools of
interval arithmetic. Hence, there is no need to determine any subgradi-
ent of the objective function,f , during the computation explicitly. (The
subgradients are used to build up the polytopes.) If the interval tools are
applied in the right manner, the overestimation by the box approximation
is small and does have a negative impact to the method only in rare cases.

(iii) Generally, ε-bundle methods require to solve a quadratic subproblem at
any step to compute the search direction. At the interval approach, the
search direction is simply the argument of

min{‖y‖ : y ∈ F ′k} (shortly written as min‖F ′k‖),
where the norm denotes the Euclidean norm, cf. Remark 2 in Section 2.

(iv) Whereas some methodical and computational efforts are necessary at the
ε-bundle approach to obtain a convergence behavior like

min‖Pk‖ → 0 ask→∞,
the convergence behavior

min‖F ′k‖ → 0 ask→∞,
which arises at the interval approach, is always satisfied without any fur-
ther ado.

The termination of nonsmooth algorithms is generally initiated when

0 ∈ ∂f (xk) or 0∈ ∂εf (xk)
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or similar conditions hold. Therefore,ε-bundle algorithms are frequently caused to
stop when

min‖Pk‖ 6 δ for someδ > 0. (3)

Now, if outer approximations are used, it is equally reasonable to stop the algorithm
when

min‖F ′k‖ 6 δ (4)

occurs.
Note that neither (3) nor (4) can guarantee that 0∈ ∂f (xk) or 0 ∈ ∂εf (xk)

is satisfied, and thatδ is mainly a measure for the flatness of the subgradients
under consideration. Following the standards of scientific computing, it is therefore
necessary either to confirm that 0∈ ∂εf (xk) and that a local minimizer lies inXk
or to continue the search by checking for a local minimizer in boxes adjacent to
Xk. These tasks together make up the contents of theglobal phase. Hence, in the
first case, being the affirmative one, safe bounds for a local solution are obtained
automatically. Local solution means, in fact, a local minimizer off , and not only a
stationary or saddle point. In the second case, the search for a solution will be con-
tinued, but no longer withε-bundle related methods, but withintervalbranch and
bound andmonotonicity checking methods (we call them IBBM for brevity). The
reason for dropping theε-bundles is that the inaccuracy of the local search result
was caused mainly by the use of approximations of subdifferentials. Therefore,
this global phase will primarily rely on the function values and admit derivative
information only secondarily in the so-calledmonotonicity test, which is a suitable
means for nonsmooth functions too [39]. While interval based global optimization
methods are usually applied to an initial box in which a solution is looked for, we
have to modify these methods in such a manner that the search will proceed to
adjacent boxes when no minimizer is found in theinterior of the initial box (being
the termination box of the local phase, mainly).

Since the basic features of IBBM are well known, cf. for example [3, 8, 18–
21, 39, 41, 42, 44, 45], there is no need at all for their extensive treatment, and
we restrict ourselves to exploring the links between the foregoing local phase and
IBBM and abridging the main steps of IBBM. However, we have to treat those
issues more detailed which are needed for the convergence proof of the global part.
First attempts for solving nonsmooth problems with interval methods seem to be
[21, 39, 53].

In Section 2, the algorithm for the local phase is established and in Section
3, the algorithm for the global continuation. The convergence proofs for the two
algorithms are given in Section 4. In Sections 5 and 6, we discuss some techniques
for constructing inclusions for functions and subdifferentials.
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2. The local phase (how to get a local minimizer)

The aim of this section is a search for an approximative local minimizer of the
unconstrained optimization problem

minf (x)

wheref is locally Lipschitz. To achieve this aim, we propose the following algo-
rithm, which will be terminated by condition (4). The computation will then be
continued by a global phase, which will either confirm that a local minimizer has
been obtained and provide safe bounds for it or improve the solution (cf. the next
section).

Let I be the set of real compact intervals, thenIn is the set ofn-dimensional
intervals resp. boxes. LetE ∈ In be that cube which has the zero vector as midpoint
andε as edge length.

ALGORITHM 2.1. (for obtaining an approximative local solution)
INPUT PARAMETERS:

x0 ∈ Rn as starting vector,
ε > 0 as width of the cubes needed as domain for the subdifferentials (de-

fault: 10−2 for average working areas for the iterates,xk , that is, about
06 ‖xk‖ 6 100)and

k = 0 as counting index for the number of iterations.
Step 1(Creating the boxes).

SetXk := xk + E ∈ In;
determineF ′k ∈ In with F ′k ⊇ ∂f (Xk) (as outer box inclusion of the set of
subdifferentials overXk).

Step 2(Termination criterion).
If min ‖F ′k‖ 6 δ, then terminate and continue with Algorithm 3.1 for obtaining
inclusions of the minimizer.

Step 3(Choice of the descent direction).
Let gk ∈ F ′k minimize‖F ′k‖, that is,‖gk‖ = min‖F ′k‖.
Setdk := −gk/‖gk‖ (descent direction)

Step 4(Step length determination).
Let tk solve minf (xk + t dk) subject tot > 0.

Step 5(Next iterate).
Setxk+1 := xk + tk dk ,
k := k + 1,
Go to Step 1.

REMARKS
1. As will be seen in Section 4, the termination criterion will hold under standard

assumptions after a finite number of steps.
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2. SinceF ′k is an axes parallel box, the checking of the termination condition in
Step 2 as well as the determination ofgk in Step 3 is a simple programming
task.

3. The algorithm works equally well with inexact line search (compare [25]) un-
der the usual conditions of type Armijo et al. (The proof of Theorem 4.1, which
deals with the convergence of the algorithm with exact line search, remains
valid for the inexact search version under some weak minimum step length
assumptions.)

4. The algorithm works also for that kind of generalized locally Lipschitz func-
tions where unbounded subdifferentials are admitted (cf. Section 5).

5. The main principle of the algorithm, that is the use of outer approximations
of subdifferentials over a cube (or a box or a ball, etc.) is applicable to other
methods for solving nonsmooth optimization problems too.

6. Steps 3 and 4 can also be carried out within a trust region environment. We do
not discuss this variant since it has no influence to the use of outer approxima-
tions, which is the target of this paper.

3. The global phase (how to get safe error bounds)

Algorithm 2.1 terminates when an approximate of a local minimizer is found in
the sense that the necessary condition for it is almost satisfied. That is, ifXk is the
box where Algorithm 2.1 has been terminating, the chances that a local minimizer
does already lie inXk are excellent. But it is also possible that the solution is a
bit outside this box, and, in a worst case situation, it cannot be excluded, that the
boxXk contains an extremely flat function piece instead of a minimizer or that the
zero with respect to condition (4) is caught only because the overestimation of the
bundle by the box is too large. Therefore, in the sense of scientific or validated
computation, a decision which of these cases applies is unavoidable.

The global phase, as described in this section, will either confirm that a solution
lies inXk or will initiate a search for a solution with global means as far as it can
be justified economically. The heart of the global search could be any deterministic
global optimization procedure, see for example [1, 3, 5, 8–11, 15–20, 38, 39, 41,
42, 44, 45, 52]. Since we do not know any method that is more robust, simpler and
applicable in more general situations than interval based methods, we pick out the
one we were calling IBBM in Section 1. This name is rather a working title than the
official name of this method. We refer to [8, 41, 42] for a more detailed description
and to [21, 39, 53] for an adaption to nonsmooth functions. We do not describe
this method again in this paper, but it is necessary to explain precisely what we
expect from this method and its purpose in order to formulate the algorithm in no
uncertain terms:

LetY ∈ In be a box (such asXk of Algorithm 2.1) andf be the locally Lipschitz
function as objective function of the minimization problem. Further we assume that
to every subboxZ of Y , outer approximationsF ∈ I andF ′ ∈ In of f and∂f over
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Z, resp., are available, such that

F = F(Z) ⊇ f (Z), F ′ = F ′(Z) ⊇ ∂f (Z).
Under theapplication of IBBM tof overY , we understand a computation which
results in a list of subboxesS1, . . . , Ss of Y with prescribed maximum width such
that the global minimizers off over Y lie in their union. The subboxes can be
degenerated. Details can be found in the references cited.

It would also go too far to show where the monotonicity test flows in during the
application. We only note that this test is one of the most effective tools of interval
analysis. The test is designed to discover whether a function is strictly monotone
over a box with respect to a coordinate direction. The conclusion in the affirmative
case is that this function has no minimizers in the interior of this box. (An example
can be found in Section 6, Example 6.4.)

Let us now connect IBBM with the target to find inclusions for the approximate
minimizer which has been obtained by Algorithm 2.1. Assume that the procedure
had stopped with a boxXk. We setY = Xk. We remind thatY is a cube, and that its
edge length isε. Now, IBBM is applied tof overY until the remaining subboxes,
S1, . . . , Ss , are of maximum edge lengthε/4. LetZ be their box hull, that is, the
smallest box that contains each of the subboxesS1, . . . , Ss. Clearly,Z is also a
subbox ofY . By int Y the interior ofY (relatively toRn) is denoted. We denote the
midpointof a boxZ by mid(Z) and thewidth of Z (maximum edge length of Z)
byw(Z). Then we distinguish three cases:

Case (i).Z ⊆ int Y . Due to the properties of IBBM,Z contains a global
minimizer of f over Y . SinceZ lies in the interior ofY , a local minimizer, say
x∗, of f overRn lies inZ. Hence, the aim of the global phase of the computation
is reached, and one canterminatethe computation. (Sincex∗ will not be known
in general, one can accept the midpoint ofZ as approximate ofx∗.) We have thus
obtained the absolute error estimation

‖x∗ −mid(Z)‖∞ 6 w(Z)/2< ε/2 (5)

where the norm used is the maximum norm. (If the absolute error width obtained
is not satisfiable, IBBM can be applied toZ again with a prescribed smaller size of
the final subboxes.)

Case (ii).w(Z) 6 ε/4 and the edges ofY andZ intersect. This condition does
not yet allow a decision whether intY contains a global minimizer off | Y or not.
Two constellations are possible:

(a) There is a global minimizer off | Y , sayx◦, in the interior ofZ so thatx◦
is a local minimizer off in any case.

(b) There is a global minimizer,x◦, of f | Y on the edge ofY . Certainly,x◦
could be a local minimizer off too, but it is most likely that it is located
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outside ofY in one of the boxes adjacent toY . This second constellation is
frequently indicated by the computational result thatZ consists of a point
or a degenerated box of lower dimension lying on the edge ofY . The degen-
eration had been caused by the successful application of the monotonicity
test and the succeeding replacement of the whole boxY or of subboxes of
Y by edges which might contain a global minimizer off | Y .

In order to strive for a computational decision of which of the two constellations,
(a) or (b) might be applicable, it makes sense to continue the search for minimizers
aroundx◦. Therefore it is reasonable to apply IBBM again, actually to that box that
has mid(Z) as midpoint and edge lengthε. (We will show in the next section that
this case can occur only a finite number of times.) Nevertheless, the chances are
not too bad that, already after a few steps of the type of case (ii), the computation
turns back to case (i) and terminates with the error estimate (5).

Case (iii). None of the cases (i) or (ii) holds. In this case we suggest to ter-
minate the computation since a continuation will, in general, be too expensive for
solving local problems. The high costs of a continuation arise since it is necessary
to switch to completely global methods outside the current box,Y . That is, one has
to extend the search for minimizers probably to more than one adjacent boxes, and
this extension will repeatedly be necessary, further, one has to store all these boxes
in lists and to apply the global methods to the lists. (Such a situation can arise if
the objective function is extremely flat, or if bulks of minimizers lie in the area
under consideration, or if there are singular points from which several directions
of locally steepest descent leave or if the influence of rounding errors increases
too much.) In spite of the high numerical costs, it is possible to show that such a
completely global procedure terminates after a finite number of steps, if standard
assumptions are satisfied (see e.g., [41]). Nevertheless, if one really wants to obtain
guaranteed inclusions for solutions, it is worthwhile to go through this case.

ALGORITHM 3.1. (for obtaining safe error bounds for the solution)

INPUT:
Box Y := Xk ∈ In which had been the current box at the termination of
Algorithm 2.1, whereε = w(Y ).

Step 1.
Apply IBBM to f overYas explained above. The result is a list of (eventually
degenerated) boxesS1, . . . , Ss of maximum widthε/4. LetZ be their box hull.

Step 2.
If Z ⊆ int Y then STOP (a local minimizerx∗ of f lies inZ). (Optionally: If
the error estimate (5) is not sharp enough, apply IBBM toS1, . . . , Ss again with
diminished values forε.)

Step 3.
If w(Z) 6 ε/4 and if the edges ofY andZ have a nonempty intersection, then
setY := mid(Z)+ E and goto Step 1
else goto Step 4.
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Step 4.
STOP (since the continuation of the computation tends to become uneconomi-
cal).(Optionally:continue the computation by enlarging the boxY and applying
IBBM repeatedly, if a guaranteed inclusion of solutions is required.)

REMARK 3.1. If Step 3 is called up several times during the computation, it is
reasonable to reexamine whether criterion min‖F ′(Y )‖ 6 δ is still valid, where
F ′(Y ) ∈ In is the actual outer approximation of∂f (Y ), cf. the termination criterion
in Step 2 of Algorithm 2.1. If this criterion is hurt, the necessary condition forY

to contain a local minimizer off is no longer valid so that the computation of
the global continuation becomes uneconomical and it would be more reasonable
to return to Algorithm 2.1 with input boxX0 := Y and to restart the local search.
(Such a situation may occur if the iteratesXk of Algorithm 2.1 pass through points
that have a saddle point behavior. First, condition min‖F ′k‖ 6 δ will apply in
such cases and the computation will switch to the global method. It is plausible
that then Step 3 of this algorithm would be called up several times, and since the
descent becomes steeper and steeper, there is no chance for a soon leaving of Step
3. The costs will go up since the maximum distance from one iterate to the next
is not larger thanε/2. Clearly, Algorithm 2.1 would proceed reasonably in this
situation.)

4. Convergence results

We show that Algorithm 2.1 as well as Algorithm 3.1 terminate after a finite num-
ber of iterations. The proofs need the standard assumption that the computation can
be executed within a compact domain, i.e., that,

for anyy ∈ Rn, the set{x ∈ Rn : f (x) 6 f (y)} is bounded. (6)

The following lemma enlightens the descent situation at thek-th iteration of
Algorithm 2.1.

LEMMA 4.1. If 0 /∈ F ′k, then
(i) dk is a (proper) descent direction off for eachx ∈ Xk,
(ii) xk+1 /∈ Xk.
Proof.A well-known theorem of convex analysis says, that for a compact con-

vex setG ⊆ Rn and for anyg ∈ G the following equivalence holds,

g = arg min{‖p‖ : p ∈ G} ⇐⇒ ptg > ‖g‖2 for all p ∈ G
(cf. [30] or [13] for example).

We apply this theorem togk = arg min{‖p‖ : p ∈ F ′k}, (cf. Step 3 of Algorithm
2.1, wheredk = −gk/‖gk‖ is set), and obtain

ptgk > ‖gk‖2 for all p ∈ F ′k,
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and further, sincegk 6= 0 and∂f (Xk) ⊆ F ′k,
ptdk 6 −‖gk‖ < 0 for all p ∈ ∂f (Xk).

Consider anyx ∈ Xk. Then it follows that

ptdk 6 −‖gk‖ < 0 for all p ∈ ∂f (x), (7)

which means thatdk is a proper descent direction off at x (cf. [30], p. 78 for
example). This proves (i).

The assertion (ii) is obvious: If the next iterate,xk+1 = xk + tkdk (cf. Algorithm
2.1), would lie inXk+1, thendk would be a proper descent direction off in xk+1

by (i), andtk could not be a solution of the step length determination. 2
Let now(xk) be a not terminating sequence of iterates of Algorithm 2.1 and(gk) be
the related sequence of directions occurring in Step 3, that is,gk = arg min‖F ′k‖.
THEOREM 4.1. If the assumption (6) holds, then the sequence(gk) converges to
0.

Proof.Because of (6) there exists an accumulation pointx∗ of (xk). Let (xk)k∈K
be a subsequence with

lim
k∈K xk = x

∗.

Applying Lemma 4.1 we receive a step-length greater thanε/2 in every step. From
Lebourg’s mean-value theorem (cf. [30], pp. 40, 41 for example) we get for allk

f
(
xk + ε

2
dk

)
− f (xk) = ε

2
htdk

whereh ∈ ∂f (u)with u on the line segment betweenxk andxk+ ε
2dk. As‖dk‖ = 1,

it is

u ∈ Xk and therefore ∂f (u) ⊆ F ′k.
By (7), we get the estimate

f (xk + tkdk)− f (xk) 6 f
(
xk + ε

2
dk

)
− f (xk) 6 −ε

2
‖gk‖ (8)

for the descent made in every step. This also shows the monotone decrease of
(f (xk)) which together with the continuity of the functionf means that

lim
k→∞

f (xk) = f (x∗)
for the whole sequence(f (xk)). Let us now have a look at the sequence(gk).

Assume that it does not converge to the zero-vector which gives the existence
of aµ > 0 such that

∀k0 ∃k > k0 : ‖gk‖ > µ
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and so there exists a subsequence(gk)k∈K1 with

‖gk‖ > µ for all k ∈ K1 (9)

The combination of our observations leads to

f (x∗)− f (x0) =
∞∑
k=0

(f (xk+1)− f (xk))

6
∑
k∈K1

(f (xk+1)− f (xk))

6 −ε
2

∑
k∈K1

‖gk‖

6 −ε
2

∑
k∈K1

µ

which is a contradiction, since the right side goes to−∞. So the assertion of the
convergence theorem must be true. 2
As a direct consequence of Theorem 4.1 we can formulate

COROLLARY 4.1. Algorithm 2.1 terminates after a finite number of iterations, if
(6) holds.

REMARK 4.1. As already mentioned this convergence result remains valid, when
inexact line-search combined with a minimal step-length (cf. [25] for example) is
used. Since a descent direction is determined in each step andtk > ε/2 in case of
exact line-search we can obviously demand a constant minimal step-lengthtmin <

ε/2 for the computation which then also replacesε/2 in our convergence proof.

THEOREM 4.2. Algorithm 3.1 terminates after a finite number of iterations, if (6)
holds.

Proof. Let Y0 be the initial box of the global continuation, letZ0 ⊆ Y0 be the
box hull determined in Step 1, and assume that the if-clause of Step 3 holds forZ0

andY0. Setx0 = mid(Y0) andx1 = mid(Z0). Then the distance betweenx0 andx1

can be estimated by

‖x0− x1‖∞ > 3 ε/8. (10)

This is due to the facts thatZ0 touches the edge ofY0 and thatw(Z0) 6 ε/4. Let
ξ0 be a global minimizer off | Y0 then it follows thatξ0 ∈ Z0 and

f (ξ0) < f (y) for all y ∈ Y0 \ Z0. (11)
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(Otherwise, if there would exist an elementy ∈ Y0 \Z0 with f (ξ0) > f (y), theny
would already lie inZ0 due to the construction of an IBBM application.) According
to the instruction of Step 3, a boxY1 is provided for the next iteration,

Y1 := x1 + E.
The application of Step 1 toY1 yields a box hull,Z1 ⊆ Y1, and we assume

again that the if-clause of Step 3 holds. Ifx2 = mid(Z1), thenw(Z1) 6 ε/4 and
‖x1 − x2‖∞ > 3ε/8. If ξ1 ∈ Z1 is a global minimizer off |Y1, we again obtain the
relationshipf (ξ1) < f (y) for all y ∈ Y1 \Z1. SinceZ1 touches the edge ofY1 and
since‖ξ0− x1‖∞ 6 ε/4, it is obvious thatξ0 cannot lie inZ1, so thatξ0 ∈ Y1 \Z1,
and it follows

f (ξ1) < f (ξ0)

by (11).
We continue these iterations, and we get, for eachk, that the inequality‖xk −

xk+1‖∞ > 3ε/8 holds, wherexk = mid(Yk) andxk+1 = mid(Zk), and that for the
global minimizersξk ∈ Zk of f | Yk, the strict inequality chain

f (ξk) < f (ξk−1) < · · · < f (ξ0) (12)

is valid. In order to get a contradiction, we assume that this process would never
terminate, i.e., that the if-clause of Step 3 would be valid at every iteration.

By (6), the area where the minimizers operate is compact. Since the distances
from the box midpoints to the related minimizers is bounded too, the iteratesxk
as well operate in a compact area. Hence, the sequence(xk) has accumulation
points, and we can figure out points of this sequence with arbitrarily small distance.
Without restriction of the generality, we assume thatx0 and xk are such points
which satisfy

‖x0− xk‖∞ < ε/8.
Note thatk = 1 is excluded due to (10). Because of

3ε/86 ‖x0 − x1‖∞ 6 ‖x0 − xk‖∞ + ‖x1 − xk‖∞
we obtain

‖x1− xk‖∞ > ε/4.
Sincex1 andxk are the midpoints ofZ0 andZk−1, respectively, and since the widths
of Z0 andZk−1 are at mostε/4, we obtain that

Z0 ∩ Zk−1 = ∅.
On the other hand, since‖x0− xk‖∞ < ε/8 andxk = mid(Zk−1), we get

Zk−1 ⊆ Y0.
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HenceZk−1 ⊆ Y0 \ Z0 so that

f (ξ0) < f (y) for all y ∈ Zk−1

due to (11). If we sety = ξk−1 ∈ Zk−1, we get

f (ξ0) < f (ξk−1),

which contradicts (12). 2
REMARK 4.2. Algorithm 3.1 has been slimmed a bit in order to make the proof
of Theorem 4.2 as simple as possible. It is obvious that it can be designed more ef-
fective. For example, larger boxes could be admitted forZk. It is not even necessary
to set mid(Zk) = mid(Yk+1).

5. About the interval tools needed

In this and the next section, we give some hints and examples how to find appro-
priate inclusions of the objective functions and the subdifferentials. The reader is
referred to [40] or [51] for a more extensive treatment. See also the example in [21].
Further, we restrict ourselves to programmable functions to avoid considerations,
which are rather sophisticated than applicable. Programmable functions are noth-
ing more than factorable functions in the sense of McCormick [29], that obey the
additional condition that a computer program for determining the function values
can explicitly be written in some common programming language. Thus, we call a
function f programmableif f can be built up from the arithmetic, the logical and
the comparison operators and some collection of standard transcendental functions
(like sin, cos, power, squareroot, exp, log, etc.). Specially, given an argumentx, the
function value,f (x), can be computed with a finite number of operations. All the
functions dealt with in this section are assumed to be programmable.

Let g : Rn → Rm be a single-valued or multivalued function. Then we call an
interval-valued (casem = 1) or box-valued function (casem > 1),

G : In→ Im

an inclusion functionof g, if

g(Y ) ⊆ G(Y ) for anyY ∈ In.

We need inclusion functions of the objective functionf : Rn→ R (single-valued)
and of the subdifferential∂f : Rn → Rn (multivalued). A real numberα > 0 is
calledorder of the inclusion functionG for g if

w(G(Y ))− w(g(Y )) = O(w(Y )α) for Y ∈ In.
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In case ofm > 1, thewidth of g(Y ) is understood as the width of thebox hullof
g(Y ), that is the smallest box which includesg(Y ).

The order is a mainly asymptotic measure of the overestimation ofg(Y ) by
G(Y ). The consideration of the order is not extremely important for our algorithm,
since the box sizes do not vary too much during the computation.

A straight way to obtain inclusion functions is the use of so-called natural
interval extensions, which were introduced by Moore [35] and count to the most
important tools of interval analysis. They are implemented in almost every software
package of interval arithmetic like PASCAL-XSC, C-XSC, FORTRAN-XSC, etc.
The features of natural interval extensions can be sketched in the following way:

Let g : Rn → Rm be a programmable function andg(x) be a function ex-
pression (for example, a program for computingg(x) in dependence ofx). Then
the natural interval extensionof g(x) to Y , whereY is a box or a box variable
overIn, is that expression that occurs from the expressiong(x), if the variablex is
replaced byY and if the result of this substitution is interpreted (and executed) as
an interval arithmetic expression. If cases occur, one has to take care that, after the
replacement, the cases do not hurt the inclusion property and the program remains
complete (cf. Example 5.1). If standard transcendental functions occur in the ex-
pression, we may think of the range of this function over the interval as natural
interval extension. This is not a presumptuous concept, since the monotonicity
behavior of such functions is well-known and the range can be determined by
cutting up the underlying interval into the monotonicity areas of the function.

For example, the natural interval extension of the function expression

f (x) = x1+ sinx2

is

F(Y ) = Y1+ sinY2,

where sinY2 is the range of sin overY2. The order of this inclusion is 1. It is possible
to raise the order by admitting more involved expressions forf (x) and to approxi-
matef by mean value, Taylor, interpolation formulas, etc. (see, for example, [40])
or to apply other principles. Such improvements of the order are made possible by
a curiosity of interval arithmetic, which is, that different expressions for one and
the same function can lead to different inclusion functions.

In this paper, we only provide a few principles for a more or less fast and con-
venient application of interval arithmetic, and it is best to consider a few examples.
If A,B ∈ Im, thenA ∨ B shall denote the interval or box hull ofA andB, that is,
the smallest interval or box inIm containingA andB.

EXAMPLE 5.1. Let

f (x) = x sinx if x > 0,

= x cosx if x 6 0.
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The straight inclusion function off is

F(Y ) = Y sinY if Y > 0,

= Y cosY if Y 6 0,

= (Y1 sinY1) ∨ (Y2 cosY2) if 0 ∈ int Y

whereY = Y1 ∪ Y2, Y1 > 0, Y2 6 0. One can observe, that a direct replacement
of x by Y in the expression forf (x) will not lead to a complete inclusion function.
Particularly one has to be aware that the two casesY > 0 andY 6 0 do not cover
all possibilities (as is the case for real numbers), and that one has to add a third
case, 0∈ int Y , to make the decision complete. This is done best by choosing the
union of the inclusions of the first two single cases, and, in order not to leave the
interval environment, to accept the interval hull of the union as inclusion. In the
added case, 0∈ int Y , we had split the intervalY in its positive and in its negative
part to get a smaller inclusion. In situations, whereY is small or where a splitting
is inopportune or impossible, the splitting ofY can simply be dropped and the
whole argumentY be taken as argument (as far as possible) for both branches of
the function. At the example, this leads to the inclusion

Y (sinY ∨ cosY ) if 0 ∈ int Y.

An example, where such a splitting is not possible, is the following one:

EXAMPLE 5.2. Let

f (x, y) = x − y if x + y > 1,

= (x − y)2 otherwise.

A suitable inclusion function is

F(X, Y ) = X − Y, if X + Y > 1,

= (X − Y )2, if X + Y < 1,

= (X − Y ) ∨ (X − Y )2 otherwise.

EXAMPLE 5.3. Let

f (x) = max{fi(x) : i = 1, . . . , k}
with programmable functionsfi : Rn→ R, i = 1, . . . , k. Let furtherFi : In → I
be an inclusion function forfi, i = 1, . . . , k. An inclusion functionF : In→ I of
f can be constructed as follows: LetY ∈ In be given.

(i) Choose an inclusionFs(Y ), s ∈ {1, . . . , k}, with maximum upper bound,
that is,

ubFs(Y ) > ubFi(Y ), i = 1, . . . , k,

where ub stands for upper bound.
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(ii) Let F(Y ) be the union of those among the intervalsFi(Y ) which satisfy

Fs(Y ) ∩ intFi(Y ) 6= ∅, i = 1, . . . , k.

ThenF(Y ) ⊇ f (Y ) is evident.

EXAMPLE 5.4. The functionf : [0,1] → R defined as

f (x) = x logx if x > 0,

= 0 if x = 0.

is locally Lipschitz at the point 0 in a generalized sense as the derivative has
the improper value−∞. Therefore, 0 is the bottleneck at an attempt to find in-
clusionsF(Y ) if 0 ∈ Y . The direct way for finding an inclusion would yield
F(Y ) = Y logY if 0 ∈ Y . If Y = [0, y], then F(Y ) = [0, y] log[0, y] =
[0, y)(−∞, logy) = (−∞,0] provided, infinite interval arithmetic is applied. This
interval, however, cannot be accepted as a suitable result, since the overestimation
is not only too large, but also completely unrealistic. Hence we have to condemn
this direct way. Another idea is based on the observation that the monotonicity
areas off can be determined easily, so that one could provide the exact range off

over any intervalY ⊆ [0,1]. This would be, however, only an exceptional situation,
since we assume the possibility of a direct range determination at standard transi-
tive functions only. Thus we don’t intend to present such a concept as a typical
procedure either. A practicable way would be to investigate the monotonicity off

in some small neighborhood of the branching point, 0. This could be done by hand
at the preparation phase of the problem or computationally as part of the program.
In this latter case the monotonicity test can be executed automatically with interval
tools. Only the knowledge of inclusions of the derivative or the subdifferential is
necessary (cf. Remark 6.2 later on), which does not require additional computa-
tions, since the computation of these inclusions is a definite part of the algorithm.
The monotonicity test would indicate thatf is strictly monotonically decreasing in
a sufficient small neighborhood of 0. (Note that an infinite interval arithmetic must
be used for approximating∂f (Y ) which is due to the generalized local Lipschitz
property off at 0, cf. Example 6.4.) Therefore, the following inclusion would do
it (dropping parts of the knowledge our brain has):

F(Y ) = Y logY if Y > 0,

= [y logy, 0] if Y = [0, y] 6 1/e,

= [y1 logy1, 0] ∨ (Y2 logY2) if Y = [0, y1] ∪ Y2, Y2 = [y1, y2],
(whereY 6 1/e cannot be guaranteed, butY has been split so that at leasty1 6 1/e
is ensured).

Example 5.2 and the alternative of the inclusion in Example 5.1 as well as Ex-
ample 5.4 show the general recipe how to get the inclusions for involved situations
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where a splitting of the argument box is hardly possible. That is, if the function is
built up from several cases, sayk cases, let

f (x) = fi(x) in casei, for i = 1, . . . , k.

We further assume that the functionsfi (i = 1, . . . , k) are built up from arithmetic
operations and standard transitive functions only. (This is no real restriction. It
means only, that, if a branch itself consists of subcases, the branch itself is already
split.) Let furtherFi(Y ) be an inclusion offi(Y ). If fi is not completely defined on
Y , take a sufficiently large subdomain instead ofY . Then letF(Y ) be the box hull
of the union∪iFi(Y ) wherei runs through all cases which cannot be excluded to
hold for somex ∈ Y .

6. Outer approximations of the subdifferentials

In this section we show how to construct outer approximations for the subdifferen-
tials. In order to avoid the discussion of a very sophisticated theory which is still
under construction we restrict ourselves to those subdifferentials which arise from
the examples of Section 5. It should then be not too difficult to transfer the basic
principles to other examples and problems.

Inclusions for the subdifferentials can be gained in a similar manner as for non-
smooth objective functions. For the realization of the idea, Clarke’s subdifferential
version [4] is suitable,

∂f (x) = conv{lim ∇f (xν) : xν → x, xν /∈ � ∪ T }
where� is the set of all points wheref is not differentiable, andT is any set of
Lebesgue measure zero.� is also of Lebesgue measure zero due to a theorem of
Rademacher (cf. [4]). The key to a practicable procedure is that the box hull of
{∇f (x) : x ∈ Y \�} is an inclusion of∂f (Y ). This is due to the fact that a box hull
is a closed set and contains all the existing limits occurring in the subdifferential.
Sincef and hence∇f are programmable, the setY \ � will be controllable, in
general. If no further information is available, we put together the subdifferential
inclusions overY of all possible cases as was done before at the determination of
inclusions forf . This means in the worst case, that a finite number of cases occur,

∇f (x) = ∇fi(x) in casei, for i = 1, . . . , k.

We then simply setF ′(Y ) as the box hull

∇f1(Y \�1) ∨ . . . ∨ ∇fk(Y \�k),
where�i is the set of points for thatfi is not differentiable(i = 1, . . . , k). Since
∇fi is built up from arithmetic operations and standard transitive functions, the
domain of definition,Y \�i, is usually built up from intervals and can be held under
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control. Matters can be simplified, if generalized subdifferentials are admitted that
contain the improper values±∞.

We will return to the four examples and realize the concept just discussed in
order to obtain inclusions for the subdifferentials.

EXAMPLE 6.1. The derivative and subdifferential of the function in Example 5.1
is

f ′(x) = sinx + x cosx if x > 0,

= cosx − x sinx if x < 0,

∂f (x) = [0,1] if x = 0.

Accordingly, the inclusion function of derivative and subdifferential, which is ob-
tained via the natural interval extension of these expressions is

F ′(Y ) = sinY + Y cosY if Y > 0,

= cosY − Y sinY if Y < 0,

= (sinY1+ Y1 cosY1) ∨ (cosY2− Y2 sinY2) if 0 ∈ Y
whereY = Y1∪ Y2, Y1 > 0, Y2 6 0. Again, if the splitting ofY in the case 0∈ Y
is not opportune or not possible, one simply can take

F ′(Y ) = (sinY + Y cosY ) ∨ (cosY − Y sinY ) if 0 ∈ Y
without being too crude ifY is small.

EXAMPLE 6.2. The plain natural interval extension of the expressions of the
three function branches as defined in Example 5.2 leads to the following inclusion
function,F ′ : I2→ I2, of the subdifferential function∂f of f :

F ′(X, Y ) = (1,−1) if X + Y > 1,

= 2(X − Y, −X + Y ) if X + Y < 1,

= (1,−1) ∨ 2(X − Y,−X + Y ) if 1 ∈ X + Y.
EXAMPLE 6.3. LetF ′i : In → In be an inclusion function of∂fi for the function
fi, i = 1, . . . , k, as defined in Example 5.3. Then, fori = 1, . . . , k, the inclusion
F ′i (Y ) need not be part of the whole inclusionF ′(Y ), if it is guaranteed thatfi has
no essential influence to the objective functionf overY , as was the case already
at the construction ofF(Y ) (cf. Example 5.3). Therefore, an inclusionF ′(Y ) of
∂f (Y ) can be composed as the box hull of those inclusionsF ′i (Y ), for which

Fs(Y ) ∩ intFi(Y ) 6= ∅, i ∈ {1, . . . , k}.
EXAMPLE 6.4. The derivative off is

f ′(x) = logx + 1, if x ∈ (0,1].
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If the extended real axis is admitted for derivative values, we get

f ′(0) = ∂f (0) = −∞.
A realistic inclusion function off ′ is

F ′(Y ) = logY + 1.

If an infinite interval arithmetic is included in the software package, the evaluation
of F ′(Y ) can be arranged automatically by the program without any correction or
help by the user’s hand. (cf. for example [41, 43]) Further, if 06 Y < 1/e, then
F ′(Y ) < 0, which indicates strict monotonicity. This information can be used to
obtain better inclusion functions of the objective function,f , cf. Example 5.4.

REMARK 6.1. Theoretical results on the order of inclusion for nonsmooth func-
tions do not yet exist. Nevertheless, it can be seen from our examples (Examples
5.1–5.4, 6.1–6.3) that the overestimation tends to zero as the width of the argument
box Y does. Also for more involved functions it is frequently possible to choose
the inclusionsF(Y ) andF ′(Y ) in such a manner that the overestimation tends to
zero. The reason is thatf and∂f depend on branches of arithmetic operations and
standard transitive functions and that appropriate inclusions of order one ore two
for these branches can be found. (SinceF ′(Y ) is always a box, but∂f (Y ) just a set
of rather an arbitrary shape, the overestimation byF ′(Y ) is understood w.r.t. the
box hull of ∂f (Y ) and not w.r.t.∂f (Y ) itself.)

REMARK 6.2. A very fortune side effect of the computation of inclusions of
∂f (Y ) is that they can immediately be applied to the so-calledmonotonicity test,
which is one of the most powerful tools in interval methods for solving optimiza-
tion problems. The test says, thatf is strictly monotone overY w.r.t. the ith
coordinate direction when 0/∈ ∂if (Y ). Here,∂i denotes theith component of the
subdifferential. If strict monotonicity is indicated, intY cannot contain any local or
global minimizer off . This phenomenon can be utilized for several strategies for
eliminating subboxes from the search for solutions of the problem domain (cf. for
example [41, 42]).

REMARK 6.3. Influence of rounding errors.It is well-known that the standard
implementations and software packages containing interval arithmetic offer con-
venient options to control all kind of rounding errors (directed rounding, inward
rounding, outward rounding, etc.). Therefore, we abstained from touching the round-
ing aspect in this paper.

7. Numerical results

We chose three well-known examples which showed a typical performance of our
method. We compare our statistics with the computations of Lemaréchal, Schramm,
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and Mäkelä–Neittaanmäki as they are published in [30]. However, satisfactory
comparisons are not easy to establish. The reasons are, firstly, that the obtained
approximations of the minimizers were not reported. Secondly, the extense of a
‘function evaluation’ was not quite clear. (In our statistics, it can be the evaluation
of functions as well as of gradients and subgradients over a point or over a box.)
The third reason depends on the selfvalidation philosophy, which underlies almost
all interval arithmetic methods and our method too. Therefore, it is not enough
to determine approximate solutions, but also to compute guaranteed error bounds
for them, or at least to indicate in the output of the computation that such bounds
could not be found within the computation time or costs limits predescribed by the
user. Our algorithm terminates if either an exact solution can be guaranteed to lie
in the current box or it might be unreasonable to continue the computation since
the global phase had to be repeated several times.

In the following examples, the termination parameter,δ, was set to 10−15, and
the box width,ε, to 2× 10−6.

EXAMPLE 7.1. (Crescent).The objective function is given by

f (x) = max{x2
1 + (x2− 1)2+ x2− 1,−x2

1 − (x2− 1)2 + x2+ 1},
the global minimizer isx∗ = (0,0), and the global minimum isf ∗ = 0. The func-
tion is not smooth atx∗. Starting point isx0 = (−1.5,2). Lemaréchal, Schramm,
and Mäkelä-Neittaanmäki needed 31, 24, and 32 iterations, respectively, and 93,
27, and 33 function evaluations, respectively, in order to get an approximate solu-
tion x+ (which was not reported) having a function value of about 10−6. We needed
7 iterations with 58 function evaluations till the local phase was terminated. The
final box at the local phase was

X∗ = ([−9.9999,10], [−10.2895,9.71])× 10−6

and[−3.086881,3.028974] ×10−5 the final approximation of the minimum.
The global phase which was following the local phase needed 12 function

evaluations to confirm thatX∗ was, in fact, containing a solution.

EXAMPLE 7.2. (DEM). The objective function is given by

f (x) = max{5x1+ x2, −5x1+ x2, x
2
1 + x2

2 + 4x2},
the global minimizer isx∗ = (0,−3), and the global minimum isf ∗ = −3. The
function is not smooth atx∗. Starting point isx0 = (1,1). Lemaréchal, Schramm,
and Mäkelä–Neittaanmäki needed 10, 9 and 7 iterations, respectively, and 33, 13,
and 8 function evaluations, respectively, in order to get a solutionx+ (which was
not reported) having function value−3. We needed 3 iterations with 16 function
evaluations till the local phase was terminated. The final box of the local phase was

X∗ = ([−1.885, 0.1151] ×10−5, [−3.000011,−2.999991])
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and[−3.0001052,−2.9998967]the final approximation of the minimum.
The global phase which was following the local phase needed 12 function

evaluations to confirm thatX∗ was, in fact, containing a solution.

EXAMPLE 7.3. (QL). The objective function is given by

f (x) =max{x2
1 + x2

2, x
2
1 + x2

2 − 40x1 − 10x2 + 40, x2
1 + x2

2

− 10x1 − 20x2 + 60},
the global minimizer isx∗ = (1.2, 2.4), and the global minimum isf ∗ = 7.2.
The function is not smooth atx∗. Starting point isx0 = (−1, 5). Lemaréchal,
Schramm, and Mäkelä–Neittaanmäki needed 12, 12, and 17 iterations, respectively,
and 30, 17, and 18 function evaluations, respectively, in order to get a solution
x+ (which is not reported) having almost the exact function value. We needed 9
iterations with 105 function evaluations till the local phase was terminated. The
final box of the local phase had midpoint (1.06182, 2.46921) and edge lengthε

and was the final approximation of the minimum. The termination was initiated
automatically after several repetitions of the global phase steps were called up.
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